Initialization of Homoclinic Solutions near Bogdanov--Takens Points: Lindstedt--Poincaré Compared with Regular Perturbation Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initialization of Homoclinic Solutions near Bogdanov-Takens Points: Lindstedt-Poincaré Compared with Regular Perturbation Method

To continue a branch of homoclinic solutions starting from a Bogdanov–Takens (BT) point in parameter and state space, one needs a predictor based on asymptotics for the bifurcation parameter values and the corresponding small homoclinic orbits in the phase space. We derive two explicit asymptotics for the homoclinic orbits near a generic BT point. A recent generalization of the Lindstedt–Poinca...

متن کامل

Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation

An improved homoclinic predictor at a generic codim 2 Bogdanov-Takens (BT) bifucation is derived. We use the classical “blow-up” technique to reduce the canonical smooth normal form near a generic BT bifurcation to a perturbed Hamiltonian system. With a simple perturbation method, we derive explicit firstand second-order corrections of the unperturbed homoclinic orbit and parameter value. To ob...

متن کامل

Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow

The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the twofold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using timestepping, an adapted Krylov–Newton method and Arnoldi itera...

متن کامل

Bogdanov-takens Singularity of a Neural Network Model with Delay

In this article, we study Bogdanov-Takens (BT) singularity of a tree-neuron model with time delay. By using the frameworks of CampbellYuan [2] and Faria-Magalhães [4, 5], the normal form on the center manifold is derived for this singularity and hence the corresponding bifurcation diagrams such as Hopf, double limit cycle, and triple limit cycle bifurcations are obtained. Examples are given to ...

متن کامل

Normal Forms for Coupled Takens-Bogdanov Systems

The set of systems of differential equations that are in normal form with respect to a particular linear part has the structure of a module of equivariants, and is best described by giving a Stanley decomposition of that module. In this paper Groebner basis methods are used to determine a Groebner basis for the ideal of relations and a Stanley decomposition for the ring of invariants that arise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Dynamical Systems

سال: 2016

ISSN: 1536-0040

DOI: 10.1137/15m1017491